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Abstract. The ground-state energies and rublattice magnetizations of Heisenberg anti- 
ferromagnets withfl-l ike anisotropy ofneare!.t-neighbour exchange interactionson a two- 
dimensional triangular lattice, as well as on a two-dimensional square lattice, are studied in 
the framework of spin-wave theory in the first-order perturbation approximalion. To take 
account of the kinematic interactions the Dyson-Maleev transformation is incorporated 
withthe methodproposed by Kubo. Whenweneglect the kinematicinteractions,weobtain 
the ground-state energies for the S = 112 models on the triangular lattice. namely -0.1872 
for the isotropic exchange interactions and -0.1344 for the XY interactions, The kinematic 
interactions, however, increase the ground-state energies, and that for the fl interactions 
becomes -0.1293. 

1. Introduction 

As the simplest spin model that frustrates quantum-mechanically, the S = 1/2 Hei- 
senberg antiferromagnet on a two-dimensional triangular lattice (which we abbreviate 
as S = 1/2 TRHA) has attracted much interest. The study of this model was started with 
the proposal of its ground state by Anderson [I] and Fazekas and Anderson [2 ] ,  who 
pointed out that the ground state is described by a resonating-valence-bond (RVB) state, 
a kind of spin-liquid state. Since then, the model has been investigated by many authors. 
Inrecent research on high-T,superconductors, the S = l/ZHeisenbergantiferromagnet 
on a two-dimensional square lattice ( S  = 1/2 SQHA) has also gained much renewed 
attention io relation to the theory of a possible RVB mechanism of the new super- 
conductivity, being claimed first by Anderson [3]. In particular, the idea of an RVB 
mechanism was recently developed from the viewpoint of a fractional quantum Hall 
state by Laughlin [4]. Kalmeyer and Laughlin [5] and Laughlin [6] also stated that the 
ground state of the former model is equivalent to a fractional quantum Hall state. 

In spite of these studies, no one could succeed in proving whether the ground state 
of S = ~ / ~ T R H A  has no NBel order and is a spin-liquid state. Rather, a serious question 
was presented by Huse and Elser [7]. Making use of a trial wavefunction, they found a 
groundstate that hasN6elorderandalowerenergy thanthe~vmtategivenby Anderson 
[l] and Laughlin's fractional quantum Hall state [4]. The ground state of the TRHA still 
seems to remain controversial. 
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The ground-state energy of the TRHA was first calculated by Oguchi [8] in the 
approximation of free spin waves by making use of the Holstein-Primakoff (HP) rep- 
resentation. Following this, Miyake 191 developed the study of the ground state of the 
model with XY-like anisotropy of the exchange interaction in an expansion of 1/S up to 
order l/S*, and obtained fairly good values for the ground-state energy in comparison 
with the result given by Nishimori and Nakanishi [lo], who diagonalized numerically 
the Hamiltonian matrices of small-spin systems. In the numerical calculation by Miyake, 
the restriction of the boson number of each spin to be less than 2s  + 1, which is called 
the kinematic interaction, was not taken into account. Dyson [11] discussed the role of 
kinematic interactions in ferromagnets and clarified that the contribution of kinematic 
interactions to the free energy becomes exponentially small at temperatures well below 
the Curie point. In contrast to ferromagnets, however, the kinematic interaction plays 
important rolesfor antiferromagnets withsmall spinseven at T =  0, so that including its 
contribution to the ground-state energy will be important. 

In addition to the conventional HP representation of spin operators, there exists a 
transformation to represent the spin systems in terms of boson operators, which was 
invented by Dyson [ll] and then given in a simplified form by Maleev 1121. Recently by 
using the Dyson-Maleev (DM) transformation, Takahashi 1131 showed in his modified 
spin-wave theory of the SQHA that the ground-state energy in the first-order approxi- 
mation of the spin-wave interaction coincides quite well with the value of small-spin 
systems obtained by means of numerical diagonalization. Encouraged by his success, 
we use the DM transformation in our present study. 

The treatment of the kinematic interaction is generally very difficult. Fortunately, 
by combining it with the DM transformation we can appropriately adopt the method 
earlier proposed by Kubo [14]. He extended the boson Hilbert space of the HP rep- 
resentation of spin operators restricted within boson numbers less than 2s t 1 to infinity 
with repeated correspondence between the spin states and the boson states. 

Recently, we studied the static spin correlation function and the sublattice mag- 
netizations of the ground states of the TRHA and SQHA with XY-like anisotropy of 
nearest-neighbour exchange interaction in the framework of spin-wave theory by using 
the DM transformation, and found that up to the second-order approximation of the 
spin-wave interactions the sublattice magnetizations exhibit an anomalous divergent 
behaviour only in the case of the isotropic TRHA [15]. We think it is possible that this 
fact is an indication of the disappearance of the Nee1 order in the gtound state of the 
S = 1/2 isotropic TRHA. In the above study, however, we neglected the contribution 
of the kinematic interaction. The above fact shows the importance of the kinematic 
interaction. It can be thought that if the perturbation expansion taking account of the 
kinematic interaction breaks down at some higher order, the true ground state will be a 
spin-liquid state. 

In this paper we study the ground-state energy of the TRHA on the basis of the same 
spin-wave theory by usingthe DM transformation and by taking account of the kinematic 
interaction in the first-order approximation, as mentioned above to clarify the role of 
the kinematic interaction. For the purpose of comparison the SQHA is also studied in 
parallel. Thispaperisorganizedasfollows. Insection2 wepresent the DM transformation 
in connection with Kubo’s method and give the expression of the ground-state energy 
investigated in the successive sections. In section 3 we estimate the ground-state energy 
of the TRHA by ignoring the kinematic interaction. In spite of the rather crude approxi- 
mation we obtain fairly good values. The ground-state energies are calculated by taking 
account of the kinematic interactions in section 4. They are described by series expan- 
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sionsas inKubo [14]. We find that, in comparison with the values of the previous section, 
the kinematic interactions raise the ground-state energy significantly for small S. The 
sublattice magnetization is also discussed in this section. The last section is devoted to 
concluding remarks. 

2. Spin Hamiltonian and boson transformation of spin operators 

The spin Hamiltonian that we study is described by 

[(SjS,U + SfS;) + AStS;] H s  = J 
(U) 

where Sp (a = x ,  y ,  z )  is the spin operator at the ith site on a two-dimensional triangular 
latticeorasquare lattice,and(i, j )  in thesummation is takenoverall thepairsofnearest- 
neighbouring lattice sites. The parameter A controls the XY-like anisotropy of the 
exchange interaction with values within 0 < A S 1; and J > 0. 

To start our spin-wave theory, we postulate for the TRHA that the ground state of 
equation(2.1) hasaNtelorderwith threesublattice (namely A,BandC)magnetizations 
having mutual angles of 2x/3 with each other. We choose the sublattice magnetizations 
in the y z  plane and rotate the spin quantization axis of each lattice site to the direction 
parallel to the corresponding sublattice magnetization. Then rotation around the x axis 
for B and C sublattices by angles of 2 4 3  and -2n/3, respectively, yields 

Hs -+ Hs = J 2 {[- $(SlSy + Sfsf) tfi(SfSf - Sfsf)] + ASTS;} (2 .2)  
(i.i) 

where the & sign means that if the direction of the sublattice magnetization is rotated 
by an angle of - 2 4 3  ( 2 ~ / 3 )  from ith site to jth site then + (-) sign is chosen. We also 
assume the SOHA has a Nee1 order with two sublattice (A and B) magnetizations. 

For lateruse let us review the ~~ t rans fo rma t ion [ I l ] .  Weconsidertbespinoperator 
of magnitude Sand introduce the boson annihilation and creation operators, a and a', 
which obey the commutation relation 

aut - uta = 1. (2.3) 

If we take the m-boson state Im) = [l/d(m!)](at)"lO), the operator Fthat satisfies 

Flm) = F(m) I m) 
form = Oor 1 

for 2 < m < 2 s  
F(m) = (2.4) 

C[l - 1/(2s)], . . [l - (m - 1)/(2s)J 

can be defined. Then one can easily verify the following relations for the matrix elements 
of the boson operators and the spin operators: 

(m I T(S-a+a)T-' In) = (S - m)6,. = MandN =(MIS* IN) 

(m 1 Td(2S) [I -a +a / (S ) ]a  T -  ' In) = [(2S - m)(m + 1) J 'Iz 6, + 

(~ ITL ' (~s )~ 'T - '  In) = [ ( S - m  + l)m]"*6,~l, = ( M I S - I N )  

=(MI S + 1 N )  (2.5) 
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for 0 s m,  n s 2S, where M = S - m and N = S - n, and T = FLiz.  Thus we obtain the 
transformation first introduced by Dyson [l l] :  

M Ishikawa and T Tamaribuchi 

S' = T8ZT-I = s - at0 

s+ = TStT-1  E+ = V(W(1 - ata/(2S)]a (2.6) 

S- = T Z -  T-I = =V(zs)u' .  -_ 
It should be noticed that Zt is not Hermitian conjugate to Z-, in contrast with the 
relation between St and S, since Tis not unitary. 

It is in general quite difficult to study spin systems by using equations (2.6) taking 
accountofthe kinematicinteraction.Toavoidthisdifficultyandtoremove therestriction 
on the boson number, we here adopt Kubo's method [14]. He applied it to the study of 
the ground state of antiferromagnetic two-sublattice spin setems by using the HP rep- 
resentation and the variational method 1141. Kubo's idea is that we map the m-boson 
state Im) into the spin state (M) with M = S - E(m) ,  where E(m) = m mod 2 s  + 1. By 
usingthismappingthematricesintheoriginalspinHilbert spacewithdimension(2S + 1) 
are replaced with infinite-dimensional matrices in the boson Hilbert space composed 
of the infinite number of (2s + 1)-dimensional matrices. The new Hamiltonian thus 
obtained has the same ground-state energy as that of the original spin Hamiltonian. We 
use this method by combining it with the DM transformation, and obtain instead of 
equations (2.6) the following alternative transformation: 

Sz+ TE'T-I = S - E(a'a) 

St + TZtT- '  Z +  = V'(2S)[1 - S(a'a)/(ZS)]aq(a'a) (7-7) -- S- + TE* T-' = = d(z~)q(a+a)a '  

where q(a'a) = [E(afn)/ata]'~2 and T =  F-'!*. The newoperators8' and2'in equations 
(2.7) satisfy the same commutation relations as those of the original spin operators as 
well as of the operators in equations (2.6), and they also have the same matrix elements 
as those of the spin operators in each (2s + 1)-dimensional subspace. 

In the case of the SQHA, use of the antiferromagnetic DM transformation is more 
appropriate than the useof equations(2.6)or (2.7) [13], which transformsspinoperators 
on sublattice B by 

,$:+ T=: IT- I  E r  I = - S + E(a'a) 

S A +  W + T - l  E+ = d(2S)q(a'a)at[l - E(a'a)/(2S)] (2.8) 

S- + TE+ E- = d(zs)aq(a'a) 

instead of equations (2.7). 
The above new boson transfonnation makesequation (2.2) into thenew Hamiltonian 

Hs+ ?7H,J-1 (2.9) 

HI, = J (Pi, + Q,) (2.10) 
( i d )  

where 3 = II;Ti. We divided the terms of equation (2.10) into two parts, P, and QV, 
where Ptf (Q,) consists of the products of the terms of even (odd) number boson 
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operators, and Pji is given by 

P;j = (4 + A)S{[l - S(~laj)/(2S)]ajq(alai)[l - e(a:Uj)/(2S)]U, 

X v (u !u~ )  + ~ ( U ; U ~ ) U ~ ~ ( U ; U ~ ) U : }  - (4 - A)S{[l - E(a:ai)/(2S)] 

x aiq(ajai)q(afaj)  + q(a:ai)ai[l  - E(a:ai)/(7s)]a,q(afa,)} 
- B[S - E(afaJ l [S  - E(a/~aj)l (2.11) 

for the TRHA and by 

P, = 4( l  + A)S{[1 - ~ ( a : a ; ) / Q S ) ] ~ j ~ ( ~ ~ ~ j ) ~ , q ( a ~ a , )  + ~ ( u ~ u , ) u : ~ ( u ~ u , ) u ~  

x [l - E(u~cz,)/(~S)]I - 1(1 - - E(alai)/(2S)laiq(atai)q(afaj)ai 

(2.12) 

x [l - e(afaj)/(2s)] + q(a~a;)n:a iq(a~u/ ) l  

+ [S - E ( U f U i ) l [ S  - E(a:aj)l 
fort he so^^. Theoddterm Qjiisnot writtendownexplicitlyhere becauseinthe following 
approximation its contribution to the ground-state energy becomes zero. 

It should be noticed that although Hs is a self-adjoint operator, HD is not, because 
of the non-unitarity of S. One should be careful in evaluating the expectation values of 
such operators. 

Let us separate the constant and the quadratic terms of ai and a! of HD from the 
remaining terms, which describe spin-wave interactions, Here we only do this for the 

H o  = H o  + Hi., (2.13) 
TRHA: 

(2.14) 

where Hodescribes the free spin-wave Hamiltonian of the present system, which has the 
same form as the free spin-wave Hamiltonian obtained by the HP representation and is 
evidently Hermitian. Although H ,  is non-Hermitian, as stated above, to evaluate the 
ground-state energy we can expand it in powers of H,,, in perturbation theory as in the 
case of ordinary Hamiltonians. Then the ground-state energy is given by 

E ,  = Eo + WmtU(0. -m))m"" (2.15) 

U(0, -m) = Pexp(-i 1;- drHL*(r)) (2.16) 

Hf,,(r) = exp(iHor)H,,, exp(-iHor) (2.17) 

in which (op) denotes the expectation value of op  with respect to the ground state of Ho, 
which we express by I"'&) in the following, the suffix 'conn' means that only the 
connected diagrams must be picked up in the calculation of (op), and Eo is the ground- 
state energy of Ho [16]. If we retain up to the first order of H,,, in equation (2.15) we 
immediately obtain 

E G  =(Y'&IH,IY~)=(Ho).  (2.18) 

In the following sections we evaluate equation (2.18). 
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3. Ground-state energy without kinematic interaction 

In this section we discuss the ground-state energy of the TRHA by using equation (2.18) 
ignoring the kinematic interaction. The value of the ground-state energy of the SQHA is 
presented only to compare the results. 

The diagonalization of Hu of the TRHA with A = 1 has already been presented by 
Oguchi [8].  Here we give only the results to use below. We distinguish the boson 
operators on the three sublattices by writing them as a,  b or c ,  each of which belongs to 
A, B or C sublattice, respectively. Tuming to k-space representation by 

M Ishikawa and T Tamaribuchi 

a ,  = (~/N)"z E ak exp(ikri) (3.1) 
k 

etc, where N is the total number of lattice sites of the system and r; denotes the site 
vector of nth lattice site on the A sublattice, we have 

U, = -8JS'N + f J S  E {2(a:ak + b:bk + c i a )  
k 

- (1 - A ) [ y k ( a : b k  + b:ck + c i a k )  + HC] 
-k (1 f A)[yk(a-kbk + b-kCk + C-kak) + HC]} (3.2) 

where yk = [exp(ik,) + 2exp(-ikx/2) m s ( d  k,/2)]/3. The wavevector kin the sum- 
mation is taken over the first Brillouin zone of a sublattice. With the definitions of the 
quantities p!) and J C ~ )  as 

where rck = - (a  --&A)yk and A x  = ( a  + I A ) y k ,  H ,  is diagonalized to become 
3 

H" = -#JS(S + l ) N  + ~t ) (a t )~ (~ (k l )  + 1) (3.4) 

E',) = 3~s[(1 + p : ) ) 2  - (,c1>)2]W k 

!=I k 

where 

(3.5) 

( j =  1, 2, 3) are the three spin-wave modes of the system. Introducing the vector 
notations of the boson operators, 

the Bogoliubov transformation matrix that combines equation (3.2) with equation (3.4) 
is given by 

Y k  = W k @ P  (3.8) 

(3.9) 
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where 

i (3.10) 

cosh €Ih cosh @ h  cosh @ - k  

8 k  W *  Wsh @ k  0 cosh @ - k  

cosh 6 k  0 Cosh @ k  W *  Cosh @ - h  

sinh 8 h  sinh @k sinh @.A 

sinh 6 k  W *  sinh @k W sinh 4 - h  i sinh 6 h  W sinh @ k  W *  sinh @.h ‘i Vk = - 

with 0 = -(1 - ilh)/Z. The parameters in equation (3.8) are determined by 

From equations (3.3) and (3.5) we find that the E!) obey the following symmetry 

E ( l )  = E ( l )  = (3) (3.12) 

One can also easily see that among the three spin-wave modes of equation (3.5) only the 
first mode ( E : ) ) ,  in the yz plane, is gapless for any values of the anisotropy parameter 
and that the other two modes, being out of theyr plane, are gapless only for A = 1. The 
energy gaps of the modes &f) and E:) grow from zero to a finite value as A decreases 
from A = 1 to A = 0. Note also that inversion symmetry holds only for Ox, so that 
6, = 

Now let usevaluate theground-state energy, equation (2.18). Ignoringthe kinematic 
interaction in Hi,, and taking advantage of Wick’s decomposition theorem to evaluate 
the expectation value of HD with respect to lY&), we arrive at the result 

relations: 

- k  h - k  E k  ’ 

but Gk # @+ 

EG = 3JN{- 4s + S[UO - (1 - A ) U ~  + (4 + A)oI] + b(f - A ) ( ~ u o u ~  + Uov1) 

- 1(1 + A ) ( ~ u o u ~  + uIuO) -$(U{ + U: + U:) + QS(5 + A) 

x [4(u{u, + UOUlUO + u:uI) + (vi + 2u:)u,l} (3.13) 

where 

1 
uo = (a$,,) = -2 [cosh(26h) + 2 cosh(t@h)l - 1 

2N k 

1 
u I  = (aLb,) = -2 {uk[cosh(ZOh) - cosh(Z@k)] + f i \ / ? ; ~ k   COS^(^@,)} 

2N k 
(3.14) 

U 0  = ( ( a y )  = ((a,)2) = - - c [sinh(28,) + 2 Sinh(2@x)] 
2N h 

1 
U! = (a,b,) (a:bL) --E {ffh[Sinh(26k) - Sinh(2@,)] + v ? i x h  Sinh(2@h)). 

2N h 
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Table 1. The S = 112 Heisenberg antiferromagnet on a triangular lattice: comparison of the 
various estimates of the ground-state energy per bond, -fG = -E, /UN,  of (a )  A = 1 
(isotropic model) and (b) A = 0 (kY model). Present theory (i) is the value calculated in 
section 3 by ignoring the kinematic interaction, and present theory (ii) is that obtained in 
section4 by taking it into account. Here only the representative works are listed. In the thud 
columnofthe table methodsareindicated. where (A) meansspin-wave theory, (B)numerical 
diagonalization of Hamiltonian, (C) railroad trestle extrapolation, (D) variational wave- 
function and (E) fractional quantum Hall wavefunction. 

(a) Isotropic model. 

- E O  Authors Method Ref. 

0.1872 Present theory(; 

. ~L. .  . , , 

0.1823 Nishimori and Nakanishi (B) [lo1 
n. 163 Anderson (C)  111 
0.1789 Huse and Elser (D) I71 

0.182 Miyake (A) 
0.1567 Kalmayer and Laughlin (E) [51 

191 
, , , . ,  u ~ * , ~ ~ . I , i  , , , ,  

, ,  
( b )  XYmodel. 

- EG Authors Method Ref. 
, ,  . ,,l,,,..,(.,I ~ , ,  , ' . .  

0.1344 Present theory (i) (A) 
0.1293 Present theory (ii) (A) 
0.1364 Nishimori and Nakanishi (B) [lo1 
0,1348 Miyake (A) [91 

, , . . , . . .  , 

X 
-% c x 

IWJ 

0.12 - 
0.0 07 0.4 A 

1.1 - 
0.0 0.2 0.4 0,s 0.8 A 

0.50 

0.0 0.2 0.4 0.1) A 

Figure I. Ground.state energy of Heisenberg anti. 
ferromagnet on a triangular latticc: - E ~  versus A 
for (a) S = 112, (b)  S = 1 and (c) S = 312. The 
crosses indicate the values without kmematic 
interaction, and the fullcircles indicate the values 
by the Dyson-Maleev transformation taking 
account of the kinematic interaction. The values 
by the Holstein-Primakofl representation taking 
account of the kinematic interaction, which are 
indicated by the open circler. are also shown for 
the purpose of comparison. For the error bars 
attached to the fullcircles. see text. 
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Here in equation (3.14) the mth site on the B sublattice is the nearest neighbour of the 
nth site on the A sublattice, and uk and xk are the real and imaginary parts of yk, 
respectively. 

In table 1 the numerical values of the energy per bond for the S = 1/2TRHA in units 
of J ,  cG = EG/3JN, are listed in comparison with the values of the other representative 
theories, and in figure 1 -cG versus A is plotted for S = 1/2, 1 and 3/2. Although the 
approximation in this section is rather crude, the values obtained have relatively good 
coincidence even for S = 1/2 with the values of small-spin systems of S = 1/2 obtained 
by using the numerical diagonalization of the Hamiltonian matrix by Nishimori and 
Nakanishi [lo]. In particular, our value -0.1344 in the case of the S = 1/2 XY model 
(A = 0) compares well with their value -0.1364. However, for the isotropic model 
(A = 1) of S = 1/2 our value -0.1872is a little lower than their value -0.1823. In this 
caseourvalue isalsolowerthan thevalueofHuseandElser[7], -0.1789. whocalculated 
it by using the variational calculation of the trial wavefunction described by spin oper- 
ators (therefore the kinematic interaction is automatically included). This situation will 
be partly explained by the following consideration. We have ignored the kinematic 
interaction in the above calculation, which suppresses the zero-point quantum spin 
fluctuations in the ground state. The effect of the zero-poinl spin fluctuations becomes 
large as S becomes small, and since as already stated the energy gaps of two of the three 
spin-wavemodesincrease fromzero toafinitevalueas Adecreases, then thecontribution 
from the zero-point spin fluctuations of these two modes lo the ground-state energy 
decreases as A decreases. Hence the effect of the kinematic interaction decreases as S 
increasesand/or A decreases. With thisconsideration we canexpect that if thekinematic 
interaction is taken into account our value of the ground-state energy of A = 1 will 
increase more for smaller S. 

0.0 a2 0.4 A 0.0 0 2  0.4 0.6 A 

FlgureZ. Ground-state energyofHeisenberg anti- 
ferromagnet on a squarelattice: - ~ ~ v e n u s  A for 
(a )  S = 1/2, (b )  S = 1 and (c) S = 3/2. Symbols 

(4 L are the same as in figure 1 ,  0.0 02 O / I  0.6 os A 

2.2 

2.1 
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Calculatingsimilarlywealsoobtain thevalueoftheground-stateenergyofthesoH~. 
-0.3352, which isquitenearto thevalueoftheMonteCarlocalculationbyReger,Riera 
and Young [17], -0.335, as already found by Takahashi [13]. We show .zG = EG/4JN 
versus A for S = 1/2,1 and 3/2 in figure 2.  

These factstellusthat insofaraswecalculatetheground-stateenergyin the first-order 
approximation of the spin-wave interactions and neglect the kinematic interactions, we 
get better values by using the DM transformation than by using the HP representation. In 
the next section the contributionof the kinematic interaction to the ground-state energy 
is studied. 

1. Contribution of kinematic interaction to ground-state energy 

Let us evaluate the ground-state energy, equation (2.18), by taking account of the 
kinematic interaction. In the expectation value of equation (2.10) with respect to the 
state 1'4'8) there exist terms of the form (i) D 1  = ( f ( a f a , ) ) ,  (ii) Dz0 = ( f (~ f~ , ) f ca :~~) ) ,  
(iii) D 2 ,  = (fi (afai)aif2(a~a,)ai) and D, = (a~f~(n~a,)a~f~(a~a,)) and (iv) 
D ,  = (a~f1((a~o,)fi(a~a,)aj) and D,, = (fl (afai)a,a~f2(a~aj)), where f ( n ) ,  f , (n) and 
f z (n )  are some functions and site j is a nearest neighbour to site i .  To evaluate these 
quantities if is convenient to utilize the relations 

and 

in accordance with Kubo [ 141, where the integration contour C encircles the origin of 
the complex x plane. Then, because of equations (4.1) and (4.2), D1 and the DZi are 
written as 

where 

(4.3) 

(x - 1)P 

I T  (4.4) 

F,(x) = 
p - 0  P! 

(x - l)P(y - 1)' 
p ! 9 !  

fori = 0,1,2,3,4.  
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We use a slightly different method from that of Kubo [14] to evaluate the quantities 
F , ( x )  and F2(x,  y ) .  The details are shown in the appendix. We eventually get the results 

F , ( x )  = l/{[l - (x  - 1)uo]2 - ( x  - 1) ’up ’ ’  
(4.6) 

Fz, (x ,Y)  = G & , Y ) F Z ( ~ , Y )  for i=  1 ,2 ,3 ,4  

F 2 ( x , y )  = I/[det(l - R)]’/’ 

R = (  

G&,Y) = 1 
G , ( x , y )  = itr[B,(1 - R)-’] 

where 

(4.7) 

(4.81 

( x  - l)u,  (x  - l )uo  (x  - l ) u ,  (x - l ) u ,  

( x  - 1)uo (x  - l ) u ,  (x  - l j u ,  (x  - l ) u ,  

(Y - 1)UI (Y - 1 ) U I  (Y - 1)UO cv - 1 ) U O  

cv - 1 ) U l  (Y - l ) u ,  (Y - 1)uo 0, - 1)Uo 

and 

for i  = 1 ,2 ,3 ,4 .  

Here the matrices B, are defined by 

(4.9) 

Let us write the ground-state energy, equation (2.18), in the case of the TRHA as follows: 

(Pq) = -4s’ + STI - BTzo + 1(& + A)(T21 + T22) 
EG 

- 3JN 
E --= 

- h(h - A)(T23 + T24) (4.10) 
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(4.11) 

(4.13) 

x = #k.4 

F , ( x , y ) =  Z Z."(x-l)k(y-l ) (  
k = O i = O  k!l! 

we get the following expressions: 

(4.15) 
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(4.16) 

We can evaluate by using equations (4.12)-(4.16) and equation (4.10). The similar 
calculation for the SQHA can also be performed. We give only its numerical results below 
the discussion of the results of the TRHA. Notice that T ,  can also be expressed in the form 
of the integral 

TI =; fox d8(uo + U , ,  cos 8) 

1 (U,, + vo COS e)= 
x 1 - ( 2 S + 1 )  ( (I + u0 + COS e)=+' - (U,,  + U , ,  COS e)*+l ' 

(4.17) 

Since the T, in equation (4.14) are expressed by series expansions, we must sum the 
first few terms in these series to make a numerical calculation until the values converge 
within an appropriate accuracy. The convergence is, however, quite poor for A - 1 and 
small S. The numerical values of - sG versus A are shown in figures 1 and 2, and the 
values of the TRHA for A = 0 are also listed in tables 1 and 2. The numerical summations 

Table 2. The values of the ground-state energy per bond - E ~  of the antiferromagnetic XY 
model on a triangular lattice for small S estimated by taking account of (lower line) and 
ignoring (upper line) the kinematic interactions. 

112 0.13437 1 0.51717 312 1.11501 
0.1293 0.5115 1.1 1445 

k) . in T, and TZi were performed up to terms of tenth differential order, namely F', wtth 
k < 10, fik,o with k + I < 10 and G!k,')em,") with k + 1 + m + n < 10. The numerical 
value of - E ~  is oscillatory with increasing number of summed terms. When the sum- 
mations were not converged sufficiently, we gave them by the average of the summed 
values up to the ninth- and tenth-order terms, and in figures 1 and 2 showed them with 
error bars. It is unfortunate not to be able to get the values in the isotropic cases. One 
can see in figures 1 and 2 that as considered in the previous section the kinematic 
interaction raises the ground-state energy, and the amount of the raise decreases more 
for larger S and smaller A. Comparing the obtained value of S = 1/2 TRHA for A = 0, 
- E ~  = 0.1293, withourvaIueintheprevioussection,O.l344,and thevalueofNishimori 
and Nakanishi, 0.1364 [lo], we find that in the present approximation the kinematic 
interactions increase the ground-state energy too much to get coincidence with their 
value. It can be seen that in the case of the SQHA the kinematic interaction also raises 
theground-state energy, and the resultingvaluedeparts rather from the numerical value 
given by Reger, Riera and Young [17]. These facts suggest that we must extend the 
calculation of the perturbation expansion to higher-order terms to include the dynamic 
effect of the spin-wave interactions and the kinematic interactions. 
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SOLID L INE : un(wilhout k.i.1 ugor Ti 

Figure 3. Reduction of sublattice magnetization 
from the value S for Heisenberg antiferromagnet 
on a triangular lattice: uo = (n) and T, = (E(n)) 
versus A, where n = a:o,. In the present approxi. 

0.0 0.2 0.4 0.6 0.8 1.0 mation the value uodoes not depend on S. 

We can readily apply the above calculation to the HP representation of both models, 
not by expanding the factor [l - ata/(2S)]'fi in terms of ata/(2S). In the case of the 
TRHA for instance, the T, in equations (4.11) are replaced by 

T2, = T ,  = (f(a:a,)a$(a:o,)a,) 

T,  = T,, = (f(ata;)aia:f(u:ai)) 
(4.18) 

where 

f(R) = t'(21i)(l - E(n)/(2S)]'!y&7 e I)/@ + I)]'". (4.19) 

Thc results are also shown in figures 1 and 2. They show the values of the E~ to be a little 
larger than those of the DM transformation, and the differences between the values of 
the HP representation and the DM transformation become negligibly small when the 
model approaches the XY limit. 

Finally let us consider the sublattice magnetization Sruhl. Instead of the original spin 
operator S' we here use equations (2.7). By using the DM transformation the sublattice 
magnetization is calculated as 

( ~ G I S i l ~ G ) = S - ( Y G 1 9 Z a : a i I ' Y G ) ~ ( ~ G / T 2 1 Y G )  ( 4 . W  
where 1 QG) and I YG) = 9 I OG) are the ground-state vectors of Hs and Ho, respectively. 
Therefore retaining only the lowest-order terms in the 1/S expansion (free spin-wave 
approximation) we get 

(4.21) 

When the kinematic interaction is taken into account and equations (2.7) are used 
instead of the original spin operator Sz, equation (4.21) must be replaced with 

(4.22) 

For the TRHA the plots of ti0 and TI versus A for S = 1/2,1 and 3/2 are shown in figure 3. 
We can see that the zero-point spin-wave motions reduce Ssubl more remarkably for 
smaller A, while the kinematic interactions diminish the reduction of SJubl more for 
smaller A and smaller S. 

Srubl = s - ug. 

Ssubl = S - TI. 

5. Concluding remarks 

In the previous sections we have studied the ground-state energies of the Heisenberg 
antiferromagnets with =-like anisotropy of nearest-neighbour exchange interactions 
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on two-dimensional triangular and square lattices, by usingthe DM transformation within 
the first-order approximation of spin-wave interaction. The ground-state energies were 
calculated, first by ignoring the kinematic interaction, and then by taking account of it. 
We found that the numerical values of the ground-state energy of the TRHA without the 
kinematic interactions coincide relatively well with the valuesobtained by the numerical 
diagonalization method for small-spin systems for S = l / Z  and A = 1, and that the 
coincidence is quite good for S = 1/2 and A = 0. Furthermore, for the SQHA the numeri- 
cal coincidence is excellent. We also found that the kinematic interactions raise the 
ground-state energy more for smaller S and larger A .  However, since the obtained 
ground-state energy isdescribed in aseriesand the seriesconvergesvery poorly for small 
Sand large A, we can successfully obtain numerical values only for large S and/or small 
A. The values for S = 1/2 and A = 0 are seen to be a little larger than the numerical 
values obtained by the numerical diagonalization method. 

We have neglected the dynamic effect of the spin-wave interaction. To take it into 
account we must calculate the perturbation expansion of Hi,, up to higher order. Miyake 
[9] studied the contribution of the dynamic effect to the ground-state energy of the 
TRHA up to O(S-l) by using the w representation and obtained a fairly good value in 
comparison with that of Nishimori and Nakanishi [lo]. The Hamiltonian Ho of the TRHA 
includes the six-boson terms in addition to the four-boson terms (while the isotropic 
SQHA has only four-boson interacting terms). Even though these terms in HI, are of 
O(S-2), they give an important numerical contribution to the ground-state energy in the 
present approximation. This fact suggests that the dynamic effect should be studied, at 
least up to 0(,Y2). The contribution of the kinematic interaction, which Miyake did not 
estimate numerically [9] ,  cannot be neglected for small S as shown in this work. 
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and 

A ,  = a 2 / ~ x 2 a x ,  A2 = a2/ax,ax, 

A3 = J2/JX2JXp A4 = J2/Jx, ax4. 

Eualuation ofF,(x) and F2&, y) 

Let us first evaluate F2,(x,y), Since r2 is a second-order differential operator and U is 
of bilinear form, FZ0(x.  y) becomes 

It is convenient to write r2 and U in a general form, I'2 = Xj.p=lI'A,JhJ, and 
U = 2j,e=l U,,x,x,, where r,, = r, and U,, = U, are assumed. Then we have 

= E n p .  
P 

In equation (A9) Pstands for a permutation of 2n suffices of 1 and it runs over all these 
permutations. Here nP consists of the product of connected parts, 

Y, =E. . . E rh,h2uh2Ajrh3A, . . . rhh-,hauha-,A, 

np = ym,ymz. , .  (All)  

A I  Ah 

so that we can write 

where the condition m, + mz + . . . = n must be satisfied. 
We classify each lIp in the summation over P into topologically equivalent terms and 

count the number of terms that belong to each class. Let us consider the class under the 
condition, XaZ1 !ak = n,  which consists of sl Yl, s2 Yz and so on. The number of these 
topologically equivalent terms is counted through the following considerations: 
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(i) The number of the ways that n rap are connected to n U,, is n!4". 
(ii) Let us d e h e  Ra, = 4Z7rAyU,,,. The number of ways that then Rnr are connected 

toslYl,szY2andsoonisn!/s,!s2!. . .. 
(iii) However, factor k is counted too many times for Yk in (ii) since there is no end 

in the closed loop. Then one must multiply by the factor 1/(lSl2'2 . . .) to correct it. 
(iv) We have also counted too many times when we connect the k R+ into a closed 

loop Yk The factor of 4" in (i) must be corrected by multiplying by the factor 
1/(2ri2s2 , , .)because in (i) one can always find the same term by relabelling the suffices 
of the other terms connected in different ways. 

equation (A9) can be performed as follows: 
Therefore, by collecting all the factors given in (i)-(iv) the summation over P in 

1 
r;U" = 6(Sl f 2 9 2  4- . . . , n)(n!)' ~ ( 2 ' ~ - ~ Y k / k ) s k  (A12) 

S I  $2 k = l S R .  

where 6(i, j )  denotes Kronecker's delta. Then equation (A8) becomes 

Since Y, = tr[(R/4)k], we arrive at the expression 
1 

F m ( x , y )  = exp 6 tr(Rk)) = exp{- 4tr[ln(l - R)]} ( k = 1  

The matrix R is obtained by using the explicit forms of the matrices r and U ,  and given 
by equation (4.8). 

In the above calculation of Fz0(x, y ) ,  if we use the differential operator I', instead of 
r2 we can get F,(x) straightforwardly by replacing the matrix R with 

so that Fl(x)  in equation (4.7) is obtained. 

Eoaiuation of F2i(x, y )  (i = 1,2, 3, 4) 

We can proceed to evaluate F&y) for i = 1, 2 ,  3, 4 in a similar way to the above 
calculation, and obtain 

as in equation (AS). Writing Ai in a general form, Ai = ZAP A$aAJ,,, where 
Aip = AL, then after the operations of Ai and r2 on U in equation (A16) we obtain 

A i K I U n  = E. . . Ai,$A3.14.. . rah-lAaU~eqAp(q . . . ~ A ~ ~ - , ~ A ~ ~ )  
P A1 A h  

= x n;. 
P 
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By introducing the disconnected part of order m 
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%, = 2 .  . . A~,i2u),2ilri,i,uk,iS . . . ~r, , - ,n2,Und,  W 8 )  
A I  A h  

which includes a factor of A'in addition to r a n d  U, we can describe lT5 by 

I Ib  = Q i Y m , Y m 2 . .  I (A191 
where the condition m + mi + mz + . , . = n must be satisfied. Analysing the topo- 
logically equivalent terms of equation (A17) in a similar manner to the previous cal- 
culation and defining = 4 Z v  li;, U v p ,  we obtain 

= Itr[B,(1 - R)- ' ]F(x . y )  W O )  
where the relation B:, = t r [AiU(rUjm-l]  = 4-%(B,Rm*') is used. The matrices E, 
are easily calculated by using the definition and R.  They are given by equation (4.9). 

Thus we have derived equations (4.6)-(4.9). 
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